所有分类
  • 所有分类
  • 未分类

Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人

阿里巴巴通义千问团队发布了Qwen2系列开源模型,该系列模型包括5个尺寸的预训练和指令微调模型:Qwen2-0.5BQwen2-1.5BQwen2-7BQwen2-57B-A14B以及Qwen2-72B。对比当前最优的开源模型,Qwen2-72B在包括自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的Llama3-70B等大模型。

02

今天部署和体验Qwen2-7B-Instruct指令微调的中等尺寸模型,相比近期推出同等规模的开源最好的Llama3-8BGLM4-9B等模型,Qwen2-7B-Instruct依然能在多个评测上取得显著的优势,尤其是代码及中文理解上。

03

特别注意: 虽然Qwen2开源了,但仍然需要遵循其模型许可,除Qwen2-72B依旧使用此前的Qianwen License外,其余系列版本模型,包括Qwen2-0.5BQwen2-1.5BQwen2-7B以及Qwen2-57B-A14B等在内,均采用Apache 2.0许可协议。

下载Qwen2-7B-instruct模型文件

为了简化模型的部署过程,我们直接下载GGUF文件。

打开Qwen2-7B-Instruct-GGUF模型文件列表(https://modelscope.cn/models/qwen/Qwen2-7B-Instruct-GGUF/files),我们选择qwen2-7b-instruct-q5_k_m.gguf并下载:

04

我们可以根据自己需要,选择下载其它版本的模型文件!

启动Qwen2-7B-Instruct大模型

GGUF模型量化文件下载完成后,我们就可以来运行Qwen2-7B大模型了。

在启动Qwen2-7B大模型之前,我们首先需要安装Python依赖包列表:

pip install llama-cpp-python
pip install openai
pip install uvicorn
pip install starlette
pip install fastapi
pip install sse_starlette
pip install starlette_context
pip install pydantic_settings

然后打开一个Terminal终端窗口,切换到GGUF模型文件目录,启动Qwen2-7B大模型(./qwen2-7b-instruct-q5_k_m.gguf即为上一步下载的模型文件路径):

# 启动Qwen2大模型

# n_ctx=20480代表单次回话最大20480个Token数量
python -m llama_cpp.server \
--host 0.0.0.0 \
--model ./qwen2-7b-instruct-q5_k_m.gguf \
--n_ctx 20480

Qwen2-7B-instruct 命令行对话客户端
# client.py

from openai import OpenAI

# 注意服务端端口,因为是本地,所以不需要api_key
client = OpenAI(base_url="http://127.0.0.1:8000/v1",
api_key="not-needed")

# 对话历史:设定系统角色是一个只能助理,同时提交“自我介绍”问题
history = [
{"role": "system", "content": "你是一个智能助理,你的回答总是容易理解的、正确的、有用的和内容非常精简."},
]

# 首次自我介绍完毕,接下来是等代码我们的提示
while True:
completion = client.chat.completions.create(
model="local-model",
messages=history,
temperature=0.7,
stream=True,
)

new_message = {"role": "assistant", "content": ""}

for chunk in completion:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="", flush=True)
new_message["content"] += chunk.choices[0].delta.content

history.append(new_message)
print("\033[91;1m")

user_input = input("> ")
if user_input.lower() in ["bye", "quit", "exit"]: # 我们输入bye/quit/exit等均退出客户端
print("\033[0mBYE BYE!")
break

history.append({"role": "user", "content": user_input})
print("\033[92;1m")

启动CLI对话客户端:python client.py

至此,我们可以与Qwen2-7B-Instruct进行对话,体验Qwen2大模型的魅力了。

如果我们主要是通过API的方式使用Qwen2大模型,那么Qwen2部署就到此结束了。

接下来的章节,我们部署WebUI对话客户端,通过Web界面的方式使用Qwen2大模型,并且可以分享出去~

Qwen2-7B-Instruct WebUI客户端

结合Ollama工具,搭建WebUI客户端,可参考之前Llama3-8B大模型的文章:一文彻底整明白,基于Ollama工具的LLM大语言模型Web可视化对话机器人部署指南

第一步: 我们需要下载安装Ollama本地大模型管理工具:

Ollama提供了MacOSLinuxWindows操作系统的安装包,大家可根据自己的操作系统,下载安装即可:

 

安装包下载之后的安装过程,和日常安装其他软件没有差别,包括点击Next以及Install等安装ollama到命令行。安装后续步骤中,我们可无需安装任何模型,因为我们在上文中我们已经安装了Qwen2-7B大模型,后面可以直接使用。

第二步: 安装Node.js编程语言工具包

安装Node.js编程语言工具包和安装其他软件包一样,下载安装即可:https://nodejs.org

安装完成之后,可以验证一下 Node.js 的版本,建议用目前的最新v20版本:

node -v

我安装的版本:v20.13.1(最新版本)

第三步: 基于GGUF模型文件创建Ollama模型

在我们存放Qwen2-7B的 GGUF 模型文件目录中,创建一个文件名为Modelfile的文件,该文件的内容如下:

FROM ./qwen2-7b-instruct-q5_k_m.gguf

然后在Terminal终端,使用这个文件创建Ollama模型,这里我把Ollama的模型取名为Qwen2-7B:

$ ollama create Qwen2-7B -f ./Modelfile
transferring model data 
using existing layer sha256:258dd2fa1bdf98b85327774e1fd36e2268c2a4b68eb9021d71106449ee4ba9d5 
creating new layer sha256:14f4474ef69698bf4dbbc7409828341fbd85923319a801035e651d9fe6a9e9c9 
writing manifest 
success

最后,通过Ollama启动我们刚创建的大语言模型:

ollama run Qwen2-7B

启动完毕,其实我们已经有了一个和之前差不多的控制台对话界面,也可以与Qwen2-7B对话了。

Ollama启动模型

如果我们不想要这个模型了,也可以通过命令行删除模型文件:ollama rm Qwen2-7B

我们也可以查看本地Ollama管理的模型列表:ollama list

Ollama存放模型文件根目录:~/.ollama

第四步: 部署Ollama大模型Web对话界面

控制台聊天对话界面体验总归是不太好,接下来部署 Web 可视化聊天界面。

首先,下载ollama-webuiWeb 工程代码:git clone https://github.com/ollama-webui/ollama-webui-lite

然后切换ollama-webui代码的目录:cd ollama-webui-lite

设置 Node.js 工具包镜像源,以接下来下载 Node.js 的依赖包更加快速:npm config set registry http://mirrors.cloud.tencent.com/npm/

安装 Node.js 依赖的工具包:npm install

最后,启动 Web 可视化界面:npm run dev

WebUI启动成功

如果看到以上输出,代表 Web 可视化界面已经成功了!

第五步: 通过WebUI愉快与Qwen2-7B对话

浏览器打开 Web 可视化界面:http://localhost:3000/

可以看到Ollama的初始化页面,默认没有模型,需要选择,我们选择刚创建并部署的Qwen2-7B模型:

选择Qwen2-7B大模型

底部就是聊天输入框,至此可以愉快的与Qwen2-7B聊天对话了:

总结:Qwen2-7B比Llama3-8B快
验证和对比,在文本推理上,Qwen2-7B确实比Llama3-8B要快很多。

 

 

阅读全文
免责声明
该资源仅供学习和研究传播,大家请在下载后24小时内删除,一切关于该资源商业行为和违法行为与兄弟娱乐(xdyl.club)无关。
请勿将该软件程序进行商业交易、转载、违法运营等行为,该软件只为研究、学习所提供
该软件程序使用后发生的一切问题与本站无关。 若本程序源码侵犯了您的权益,请及时联系我们予以删除!
本软件程序仅供研究学习使用,切勿商用以及违法使用!!!
原文链接:https://xdyl.club/1877,转载请注明出处~~~
0
显示验证码
没有账号?注册  忘记密码?

社交账号快速登录

微信扫一扫关注
如已关注,请回复“登录”二字获取验证码